Respiration and growth of Shewanella decolorationis S12 with an Azo compound as the sole electron acceptor.

نویسندگان

  • Yiguo Hong
  • Meiying Xu
  • Jun Guo
  • Zhicheng Xu
  • Xingjuan Chen
  • Guoping Sun
چکیده

The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H(2) as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 x 10(7) cells per ml after compete reduction of 2.0 mM amaranth in a defined medium. This was accompanied by a stoichiometric consumption of 4.0 mM formate over time when amaranth and formate were supplied as the sole electron acceptor and donor, respectively, suggesting that microbial azoreduction is an electron transport process and that this electron transport can yield energy to support growth. Purified membranous, periplasmic, and cytoplasmic fractions from S12 were analyzed, but only the membranous fraction was capable of reducing azo dyes with formate, lactate, pyruvate, or H(2) as the electron donor. The presence of 5 microM Cu(2+) ions, 200 microM dicumarol, 100 microM stigmatellin, and 100 microM metyrapone inhibited anaerobic azoreduction activity by both whole cells and the purified membrane fraction, showing that dehydrogenases, cytochromes, and menaquinone are essential electron transfer components for azoreduction. These results provide evidence that the microbial anaerobic azoreduction is linked to the electron transport chain and suggest that the dissimilatory azoreduction is a form of microbial anaerobic respiration. These findings not only expand the number of potential electron acceptors known for microbial energy conservation but also elucidate the mechanisms of microbial anaerobic azoreduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemica...

متن کامل

Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12.

Microbial electrochemical snorkel (MES) reactor is a simplified bioreactor based on microbial fuel cells (MFCs) and has been suggested to be a promising approach to solve many environmental problems. However, the microbial processes in MES reactors have not yet been characterized. This study shows that Shewanella decolorationis S12 can use the conductive snorkel as direct electron acceptor for ...

متن کامل

From red to green: the propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable

Viability is a common issue of concern in almost all microbial processes. Fluorescence-based assays are extensively used in microbial viability assessment, especially for mixed-species samples or biofilms. Propidium iodide (PI) is the most frequently used fluorescence indicator for cell viability based on the membrane permeability. Our results showed that the accumulation of succinate from fuma...

متن کامل

Electricity Generation by Shewanella decolorationis S12 without Cytochrome c

Bacterial extracellular electron transfer (EET) plays a key role in various natural and engineering processes. Outer membrane c-type cytochromes (OMCs) are considered to be essential in bacterial EET. However, most bacteria do not have OMCs but have redox proteins other than OMCs in their extracellular polymeric substances of biofilms. We hypothesized that these extracellular non-cytochrome c p...

متن کامل

Draft Genome Sequence of Shewanella decolorationis S12, a Dye-Degrading Bacterium Isolated from a Wastewater Treatment Plant

Shewanella decolorationis is a valuable microorganism for degrading diverse synthetic textile dyes. Here, we present an annotated draft genome sequence of S. decolorationis S12, which contains 4,219 protein-coding genes and 86 structural RNAs. This information regarding the genetic basis of this bacterium can greatly advance our understanding of the physiology of this species.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 2007